170 research outputs found

    Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics

    Full text link
    In this paper, the chaotic ray dynamics inside dielectric cavities is described by the properties of an invariant chaotic saddle. I show that the localization of the far field emission in specific directions is related to the filamentary pattern of the saddle's unstable manifold, along which the energy inside the cavity is distributed. For cavities with mixed phase space, the chaotic saddle is divided in hyperbolic and non-hyperbolic components, related, respectively, to the intermediate exponential (t<t_c) and the asymptotic power-law (t>t_c) decay of the energy inside the cavity. The alignment of the manifolds of the two components of the saddle explains why even if the energy concentration inside the cavity dramatically changes from tt_c, the far field emission changes only slightly. Simulations in the annular billiard confirm and illustrate the predictions.Comment: Corrected version, as published. 9 pages, 6 figure

    Thermodynamic interpretation of the uniformity of the phase space probability measure

    Full text link
    Uniformity of the probability measure of phase space is considered in the framework of classical equilibrium thermodynamics. For the canonical and the grand canonical ensembles, relations are given between the phase space uniformities and thermodynamic potentials, their fluctuations and correlations. For the binary system in the vicinity of the critical point the uniformity is interpreted in terms of temperature dependent rates of phases of well defined uniformities. Examples of a liquid-gas system and the mass spectrum of nuclear fragments are presented.Comment: 11 pages, 2 figure

    Poincare recurrences and transient chaos in systems with leaks

    Full text link
    In order to simulate observational and experimental situations, we consider a leak in the phase space of a chaotic dynamical system. We obtain an expression for the escape rate of the survival probability applying the theory of transient chaos. This expression improves previous estimates based on the properties of the closed system and explains dependencies on the position and size of the leak and on the initial ensemble. With a subtle choice of the initial ensemble, we obtain an equivalence to the classical problem of Poincare recurrences in closed systems, which is treated in the same framework. Finally, we show how our results apply to weakly chaotic systems and justify a split of the invariant saddle in hyperbolic and nonhyperbolic components, related, respectively, to the intermediate exponential and asymptotic power-law decays of the survival probability.Comment: Corrected version, as published. 12 pages, 9 figure

    Memory effects in chaotic advection of inertial particles

    Get PDF
    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, t1/2{{t}^{-1/2}} type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times

    Poincare recurrences from the perspective of transient chaos

    Full text link
    We obtain a description of the Poincar\'e recurrences of chaotic systems in terms of the ergodic theory of transient chaos. It is based on the equivalence between the recurrence time distribution and an escape time distribution obtained by leaking the system and taking a special initial ensemble. This ensemble is atypical in terms of the natural measure of the leaked system, the conditionally invariant measure. Accordingly, for general initial ensembles, the average recurrence and escape times are different. However, we show that the decay rate of these distributions is always the same. Our results remain valid for Hamiltonian systems with mixed phase space and validate a split of the chaotic saddle in hyperbolic and non-hyperbolic components.Comment: 4 pages and 4 figures, final published versio

    Noise-enhanced trapping in chaotic scattering

    Get PDF
    We show that noise enhances the trapping of trajectories in scattering systems. In fully chaotic systems, the decay rate can decrease with increasing noise due to a generic mismatch between the noiseless escape rate and the value predicted by the Liouville measure of the exit set. In Hamiltonian systems with mixed phase space we show that noise leads to a slower algebraic decay due to trajectories performing a random walk inside Kolmogorov-Arnold-Moser islands. We argue that these noise-enhanced trapping mechanisms exist in most scattering systems and are likely to be dominant for small noise intensities, which is confirmed through a detailed investigation in the Henon map. Our results can be tested in fluid experiments, affect the fractal Weyl's law of quantum systems, and modify the estimations of chemical reaction rates based on phase-space transition state theory.Comment: 5 pages, 5 figure

    Computing fractal dimension in supertransient systems directly, fast and reliable

    Full text link
    Chaotic transients occur in many experiments including those in fluids, in simulations of the plane Couette flow, and in coupled map lattices and they are a common phenomena in dynamical systems. Superlong chaotic transients are caused by the presence of chaotic saddles whose stable sets have fractal dimensions that are close to phase-space dimension. For many physical systems chaotic saddles have a big impact on laboratory measurements, and it is important to compute the dimension of such stable sets including fractal basin boundaries through a direct method. In this work, we present a new method to compute the dimension of stable sets of chaotic saddles directly, fast, and reliable.Comment: 6 pages, 3 figure

    Diffusion in normal and critical transient chaos

    Full text link
    In this paper we investigate deterministic diffusion in systems which are spatially extended in certain directions but are restricted in size and open in other directions, consequently particles can escape. We introduce besides the diffusion coefficient D on the chaotic repeller a coefficient D^{\hat D} which measures the broadening of the distribution of trajectories during the transient chaotic motion. Both coefficients are explicitly computed for one-dimensional models, and they are found to be different in most cases. We show furthermore that a jump develops in both of the coefficients for most of the initial distributions when we approach the critical borderline where the escape rate equals the Liapunov exponent of a periodic orbit.Comment: 4 pages Revtex file in twocolumn format with 2 included postscript figure
    corecore